The study of structure

Living things are defined in terms of the activities or functions that are missing in nonliving things. The life processes of every organism are carried out by specific materials assembled in definite structures. Thus, a living thing can be defined as a system, or structure, that reproduces, changes with its environment over a period of time, and maintains its individuality by constant and continuous metabolism.

Cells and their constituents
Biologists once depended on the light microscope to study the morphology of cells found in higher plants and animals. The functioning of cells in unicellular and in multicellular organisms was then postulated from observation of the structure; the discovery of the chloroplastids in the cell, for example, led to the investigation of the process of photosynthesis. With the invention of the electron microscope, the fine organization of the plastids could be used for further quantitative studies of the different parts of that process.

Qualitative and quantitative analyses in biology make use of a variety of techniques and approaches to identify and estimate levels of nucleic acids, proteins, carbohydrates, and other chemical constituents of cells and tissues. Many such techniques make use of antibodies or probes that bind to specific molecules within cells and that are tagged with a chemical, commonly a fluorescent dye, a radioactive isotope, or a biological stain, thereby enabling or enhancing microscopic visualization or detection of the molecules of interest.

Chemical labels are powerful means by which biologists can identify, locate, or trace substances in living matter. Some examples of widely used assays that incorporate labels include the Gram stain, which is used for the identification and characterization of bacteria; fluorescence in situ hybridization, which is used for the detection of specific genetic sequences in chromosomes; and luciferase assays, which measure bioluminescence produced from luciferin-luciferase reactions, allowing for the quantification of a wide array of molecules.

Tissues and organs
Early biologists viewed their work as a study of the organism. The organism, then considered the fundamental unit of life, is still the prime concern of some modern biologists, and understanding how organisms maintain their internal environment remains an important part of biological research. To better understand the physiology of organisms, researchers study the tissues and organs of which organisms are composed. Key to that work is the ability to maintain and grow cells in vitro (“in glass”), otherwise known as tissue culture.

Some of the first attempts at tissue culture were made in the late 19th century. In 1885, German zoologist Wilhelm Roux maintained tissue from a chick embryo in a salt solution. The first major breakthrough in tissue culture, however, came in 1907 with the growth of frog nerve cell processes by American zoologist Ross G. Harrison. Several years later, French researchers Alexis Carrel and Montrose Burrows had refined Harrison’s methods and introduced the term tissue culture. Using stringent laboratory techniques, workers have been able to keep cells and tissues alive under culture conditions for long periods of time. Techniques for keeping organs alive in preparation for transplants stem from such experiments.

Advances in tissue culture have enabled countless discoveries in biology. For example, many experiments have been directed toward achieving a deeper understanding of biological differentiation, particularly of the factors that control differentiation. Crucial to those studies was the development in the late 20th century of tissue culture methods that allowed for the growth of mammalian embryonic stem cells—and ultimately human embryonic stem cells—on culture plates.

Related Posts

© 2025 Biomedical Engineering - Theme by WPEnjoy · Powered by WordPress